Metal-Organic Frameworks for Cell and Virus Biology: A Perspective.
نویسندگان
چکیده
Metal-organic frameworks (MOFs) are a class of coordination polymers, consisting of metal ions or clusters linked together by chemically mutable organic groups. In contrast to zeolites and porous carbons, MOFs are constructed from a building block strategy that enables molecular level control of pore size/shape and functionality. An area of growing interest in MOF chemistry is the synthesis of MOF-based composite materials. Recent studies have shown that MOFs can be combined with biomacromolecules to generate novel biocomposites. In such materials, the MOF acts as a porous matrix that can encapsulate enzymes, oligonucleotides, or even more complex structures that are capable of replication/reproduction (i.e., viruses, bacteria, and eukaryotic cells). The synthetic approach for the preparation of these materials has been termed "biomimetic mineralization", as it mimics natural biomineralization processes that afford protective shells around living systems. In this Perspective, we focus on the preparation of MOF biocomposites that are composed of complex biological moieties such as viruses and cells and canvass the potential applications of this encapsulation strategy to cell biology and biotechnology.
منابع مشابه
Metal-organic frameworks of cobalt and nickel centers with carboxylate and pyridine functionality linkers: Thermal and physical properties; precursors for metal oxide nanoparticle preparation
This article provides an overview on preparation, design, crystal structure and properties of some metal-organic frameworks of carboxylate coordination polymers mixed with pyridine-functionality linkers prepared in our laboratory. The article covers coordination polymers in two- and three-dimensional supramolecular architectures. The reported coordination polyme...
متن کاملCarbon Dioxide Capture on Metal-organic Frameworks with Amide-decorated Pores
CO2 is the main greenhouse gas emitted from the combustion of fossil fuels and is considered a threat in the context of global warming. Carbon capture and storage (CCS) schemes embody a group of technologies for the capture of CO2 from power plants, followed by compression, transport, and permanent storage. Key advances in recent years include the further development of ne...
متن کاملSynthesis and Characterization of Nano-Structure Copper Oxide From Two Different Copper (II) Metal-Organic Framework Precursors
Nano-structured copper oxides were successfully prepared through direct calcination of 1D ladderlike metal-organic framework [Cu2(btec)(2,2'-bipy)2]∞, (btec = 1,2,4,5-benzenetetracarboxylate and 2,2'-bipy = 2,2'-bipyridine) and porous coordination polymer [Cu(BDC)(bipy)](BDCH2), (BDC = 1,4-benzenedicarboxylate; bipy = 4,4'-bipyridine). The nano-structure of the as-synthesized samples are charac...
متن کاملSynthesis of Different Copper Oxide Nano-Structures From Direct Thermal Decomposition of Porous Copper(ΙΙ) Metal-Organic Framework Precursors
Copper oxide nanostructures have been successfully synthesized via one-step solid-state thermolysis of two metal-organic frameworks, [Cu3(btc)2] (1) and [Cu(tpa).(dmf)] (2), (btc = benzene-1,3,5-tricarboxylate, tpa = therephtalic acid = 1,4-benzendicarboxylic acid and dmf = dimethyl formamide) under air atmosphere at 400, 500, and 600°C. It has also been found that the reaction temperature pla...
متن کاملEffect of the pillar ligand on preventing agglomeration of ZnO nanoparticles prepared from Zn(II) metal-organic frameworks
Metal-Organic Frameworks (MOFs) represent a new class of highly porous materials. On this regard, two nano porous metal-organic frameworks of [Zn2(1,4-bdc)2(H2O)2∙(DMF)2]n (1) and [Zn2(1,4-bdc)2(dabco)]·4DMF·1⁄2H2O (2), (1,4-bdc = benzene-1,4-dicarboxylate, dabco = 1,4-diaza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 12 1 شماره
صفحات -
تاریخ انتشار 2018